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The problem of estimating the angular position of a deep space vehicle moving at a
constant velocity using two rotating tracking stations is considered. This article reports on
an initial phase of analytical studies on the optimal attainable estimation performance
and associated receiver design. Parametric dependence of the optimum attainable

estimation performance is also studied.

l. Introduction

Consider the situation in Fig. 1 where at a reference time
t = 0 there is a vehicle at point V and two stations at points S,
and S, relative to Earth geocenter 0. The vehicle is assumed to
be at a distance d, from the geocenter 0 at time 7 =0. It is also
assumed to be moving at a constant velocity v relative to
geocenter ¢ for all time in a direction which is at an angle o
with respect to OVF. The stations are both assumed to be
rotating at a constant angular velocity w about 0. At time
¢ =0, station S, is at an angle €, and the vehicle at an angle 7,
with respect to a star reference. The angle between the stations
is denoted by 7 and the distances of the stations from
geocenter by R, and R,, as indicated in Fig. 1.

We assume that the vehicle is continuously transmitting a
signal s(7). Each station receives an additive noise-corrupted
version of this transmitted signal. The received waveforms
from both stations over a given time interval are then used to
estimate the unknown vehicle angle y,,. This article considers
this estimation problem based on the assumptions that d, v,

a, 1, w, and €, are known. These assumptions are made so
that the effect of the rotating stations and the moving target
on angular position estimation can be studied. Future studies
will take into account imprecise knowledge of these
parameters.

The estimation problem is defined in Section Il below along
with a discussion of the minimum attainable mean square
estimation error performance. Since we could not determine
the optimal estimator, a suboptimal estimator is derived in
Section III. The performance of this suboptimal estimator is
examined relative to the optimal attainable performance
derived in Section II. In Section IV we examine the depend-
ence of the optimal attainable performance on angular
position, station rotation, station distance from geocenter and
observation time duration. The specific case of a sinusoidal
ranging signal is considered and numerical computations of the
optimum attainable angular estimation accuracy are performed
for several parameter values. Conclusions are given in
Section V.
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Il. The Estimation Problem

Let us first derive the equations for the received waveforms
at each station. The wehicle is assumed to continuously
transmit a signal s(¢). The received waveform at station S, is
assumed to be

» O =51t~ 0, ¢, y)] +n,(0) M

where n,(f) is additive white Gaussian noise with power
spectral density N, and ¢, (¢, v,) is effectively the signal
delay time. Similarly, the received waveform at station S, is
assumed to be

¥, () = slr- ¢, v)] +n,(0) @

where n,(r) is additive white Gaussian noise with power
spectral density V, and ¢,(¢, v,) is the signal delay time to
station S,. The signal delay times ¢, (¢, v,) and ¢,(z, v,) are
both deterministic functions of the unknown vehicle angle v,,.
We assume that v, 7,(¢) and n,(¢) are mutually statistically
independent. In Appendix A, the geometry of Fig. 1 is used to
derive the following expressions for ¢, and ¢, (¢ = velocity of

light):
0,(tvg) = [1= (/)1 [ () - (v, cos @)

+vR, cos(y, ta-¢€, - wt)fe?]

0
- fe)* 177 [t + (vd,, cos @)fc?

e - 272
- VR cos (v, ta- €, wt)fc?]

+11- (/0?17 (@ +R? - 2R d, cos (v,

e, - et - 21} 3)
0,(t.79) = (1= ()Y " [ eyt = wdy cos @)e?

+ VR, cos(y, ta €~ 0" wh)fe?]

+{(1- ()7 [t + (v, cos @)fe?

<R, cos (1 + - €y~ 0= wife?]’

+(1- (e))" (@2 + RE - 2R, d cos

(v, - o - - WO - 21} v @

16

The receiver’s function is to estimate vy, based on observa-
tions (v, (¢), v, (), T, <t < T,, with a goal of minimizing
the mean square estimation error. The minimum mean square
error (MMSE) estimator is the conditional mean estimator
when the prior distribution of vy, is known. In this case, the
conditional mean estimator is nonlinear. Moreover, it appears
that the problem of determining explicit estimator equations is
not tractable. An approach to overcome this problem is to
derive suboptimum receivers that can be implemented instead.
In the next section of this paper we consider one method of
obtaining a suboptimal receiver by using an extended Kalman
filter estimation approach. This approach results in a relatively
simple receiver structure.

It is also of interest to determine the optimum mean square
estimation error so that the performance of suboptimal
receivers can be evaluated. Of course, the minimum attainable
mean square estimation error is of interest by itself. Unfortun-
ately, it appears in this case that the problem of determining
this optimum performance value is also not tractable. How-
ever, it is possible to obtain lower bounds (Refs. 1-3) on the
minimum mean square estimation error. The Cramer-Rao
lower bound (Ref. 1, p. 275) appears to be the most tractable
to use. In the case when v, is an unknown but nonrandom
parameter, the Cramer-Rao lower bound on the mean square
estimation error of any unbiased estimator ?0 is given by
(Ref. 1,p.275):

E[(Fy - 1)1

2 "2 86(070) |
> 120 Q) f s‘z(z—¢,.(r,vo))< ;7——0—) dt

i=1 Tl 0

®)

where $§(t) = ds(r)/dt. In the case when vy, is a random
parameter with known density p(yo), the Cramer-Rao lower
bound on the mean square estimation error of any estimator
7, is given by (Ref. 1, p. 275):

E®, - 7)1

2 Ta
>ENDS @IV f 2@t ¢, (ty,)
i=1 -T,

S ©

36.1.75) \’ 9 1np(y,)
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where the expectation in the right hand side of Eq. (6) is with
respect to the prior distribution of y,. For a normal vy, with
variance ofy , Eq. (6) reduces to:

E[(¥y - 7o)°)

2 ) 001,7,)
> ‘15 > (2/N,.)J s (¢~ ¢(r70))< O) d

I i=1 -7, 870

)»1

+ 1/03 S N

These lower bounds will be used in the remainder of this
article to estimate the performance of the suboptimal esti-
mator as well as the optimum theoretically attainable
performance.

Ill. The Estimator

Consider the problem of estimating 7y, in the following
equivalent state variable formulation. Let y(¢) be a variable
state satisfying

¥(0) =
(®)
Y-T,) =7,

Then ¥(r)= 7y, the parameter to be estimated, for all r.
Rewrite Egs. (1) and (2) as

y,®) st - ¢, y(1) +n (2
¥ = = ©)
v,(®) st = ¢, (£, 7(1)) + ny(1)

So the equivalent problem is to estimate 7(T2) based on
observations of y(¢) in the interval [-T, 7,].

As we noted previously, the problem of determining the
MMSE estimator is not tractable. An alternative is to derive a
suboptimal estimator that approximates the MMSE estimator.
Another alternative is to abandon the MMSE criterion and to
seek estimators based on the maximum likelihood (ML) or
maximum a posteriori (MAP) criterion. However, it can be
shown (Refs. 1,4) that the optimum ML or MAP estimators
are also not practically implementable. Hence, developing
estimators using the ML or MAP criterion will also require

consideration of suboptimal estimators. Since the ultimate
performance measure of interest is still mean square error, it
appears more appropriate to seek approximations of the
MMSE estimator.

There are numerous ways (Refs. 4, 5) of determining such
suboptimal estimators. Our approach will be to adopt one
version (Ref. 4, p. 267) of the extended Kalman filter
algorithm. This version is the Kalman filter operating on a
linearization of the observation equations (9) about the state
estimate. The reason for adopting this approach over others is
its relative simplicity. In the nonlinear estimation folklore, the
extended Kalman filter is regarded as being capable of
performing as well as other suboptimal schemes in most
problems. So there is a priori no reason to believe that
constraining our approach to the extended Kalman filter is
overly restrictive.

Let ¥(¢) denote the extended Kalman filter estimate of v(z).
Then a straightforward application of the equations of Ref. 4,
(p. 267) shows that ¥(¢) satisfies

dV(f) -P() Z (1N (6= st - 6 (6500)]
[ 3p,(t, 7@)]
s(t - (10)
¢(r 7(t))
dgﬁ’) - P2(¢) ,2; (1/N) [s(t- ¢L7(0)) ——— ]
(1n
with initial conditions
¥-T,) =7, (12)
P(-T)) = af/ (13)

where 7, and o are the prior mean and variance respectively
of v,. (We shall denote

89,(4,7,) 39,[1,5(1)]

37, . oy
Yo~Y ()
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for simplicity). Also,in Egs. (10), and (11), P(¢) represents an
approximation of the conditional variance of (¢f). The
solution of Eq. (11) can easily be shown to be

t 2
P@) = {1/@0 3 amy {s'(r T0))

~T1 i=1

a¢,.(r§<r»J 2 }
KA A (14)
oy

Rewriting Eq. (10) as an integral equation gives

t 2
30 =7, - f P Y (UN) [y,.(ﬂ—s(r—as,.(ri(r»)

Tl i=1

3, (rﬁ(r))}
" ar (15)

. [s (- ¢,(r7(7))) PN
oY

Thus, Eqs. (14) and (15) give the estimator structure with
Y(T,), the desired estimate of Yo- The only prior statistical
knowledge of v, required is its mean and variance. A block
diagram of the implementation of the estimator is given in
Fig. 3. The expression for 0¢, [¢, ¥(r)] /37 is given in Egs. (B-2)
and (B-3) of Appendix B. These waveforms are implemented
in the receiver of Fig. 3 by adjusting the ¥(¢) phase contribu-
tions in the sinusoidal terms given in Egs. (B-2) and (B-3). The
structure of the estimator is somewhat similar to the MAP
estimator with normal prior distribution for v, (Ref. 1, p.
453). One substantial difference of the estimator here with the
MAP estimator is that the gain term P(7) in the integral in
Eq. (15) is replaced by 2027 in the MAP estimator. This is
because the gain is updated to account for the change in the a
posteriori variance of 7, based on the observations. This is not
performed in the MAP estimator.

In Egs. (14) and (15), ¢(z, v) is given by Eq.(3) and
9¢,(t,v)/dy by Eqgs. (B-2) and (B-3) in Appendix B. Further
simplification of Eqgs. (14) and (15) can result from using the
simpler approximations in Eqs. (24) to (27) given in section IV
for ¢; and 0¢,/0y. Simplification of the basic estimator
structure depicted in Fig. 3 apparently cannot be done
without specific assumptions on the signal structure.

The performance of this algorithm unfortunately cannot be
determined analytically. In evaluating extended Kalman filters,
P(?) is often regarded as a measure of the mean square error.
However, care must be taken to adopt this conclusion since
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P(r) is only an approximation to the conditional variance of
() (Refs. 4, 5). Moreover, P(¢) depends on the observations
and so cannot be determined other than from simulation runs
of the filter. In spite of these pitfalls, let us examine Eq. (14)
to obtain a heuristic estimate of the best possible performance
of the estimator.

Assume that the estimator is performing well. Thus, F(z)
will be close to y(¢) = 7,- Assume also that P(T2) is a good
approximation of the mean square estimation error. Then,
from Eq. (14) we have

P(T,) =

F 2 T, 5 2 |
(350

3 (1N j §2 (¢ - ¢t (——A—) dt

i=1 —Tl 67

—

E " NEOIE
1+ ;(wvi)/T §2 U_‘z’i([’?(t)))<—l7w—> dt o§0

1

2 T2 3, (L3N\2 |
S DINCYAY BRI (RN (2 (5)) ——7:*) dt
i=1 -T o

1
(16)

Let 7, be the true value of the unknown angle. So, if (r) =
Yo teplacing ¥(r) by 7y, in Eq. (16) shows that the upper
bound on P(T,) is roughly twice the Cramer-Rao lower bound
(Eq. (5)) on the optimum mean square error. Thus from the
above heuristic point of view, the best possible performance of
the estimator is roughly within a factor of 2 from the
Cramer-Rao lower bound of Eq. (5).

IV. Optimum Theoretically Attainable
Estimation Performance

As we noted previously the Cramer-Rao lower bound gives
a lower bound on the optimum attainable angle mean square
estimation error. In this section we shall examine the
Cramer-Rao lower bound in a special case. In particular, we
shall assume the following set of parameters:

d, = 8X 10® km
R =R, = 65X 10 km
17
v = 10 km/sec
T1 = T2 = 30 min



This set of parameters is consistent with the distances
encountered in a Jupiter mission. We assume in addition that
N, =N, for simplicity. We shall first analyze the effects of the
relative angular positions and the rotation of the Earth on the
Cramer-Rao lower bound (Eq. (5)). This, then, gives the
dependence of the optimum attainable performance on these
effects.

We first consider the effect of the angular positions v, €,
and 7 given in Fig. 1. Since the problem of estimating v, is
nonlinear, the minimum attainable estimation error would
generally depend on 7,. Consider first the case when w =v = 0
for insight into this dependence. Using the parameters in
Eq. (17) we have from Egs. (3) and (4) that

¢, (17g)

= [dg +RY-2d R cos (v, - eo)] 1/2/c

1R

[(dg + R?)]/z/c} [1 - (R,d,/(d> + R?)) cos (v, - eo)}

(18)
b, (1.7,)
= [dﬁ +R3 - 2d R, cos (v, ~ €, * T?)] ‘7“
> (g e {1ty 03 R
cos (70 T €y 77):| (19)

SO

39t 7,)
o = [Ridyje@ B3 s, e 20
a¢2(t’ 70) 1/2 .
w370 = [deo/c (dy +R3) ]sm (Y~ &~ m (21

Since [Rdyfe(dl + R})'?]= 217 X 1072, ¢t v,) is
relatively independent of 7,. Thus an approximation of the
Cramer-Rao lower bound (Eq. (5)) in the case when w=v=0
is:

E (7o~ 7)°]

2 32 T 2 2,172
R4 f » (t_ (@2 +R?) _)
27042 2 \

N 2@ +R) ). c

T

\4

2R2d?
Sin2 (’)’0 - Eo)dt + ————2"—2—‘—2“
N, (d? +R?)

o @) .
s \t- —————] sin? (Vo€ n)dt
c

T

(22)

Hence under the assumption that R, = R, and N, =N, Eq.
(23) depends inversely on

f(8) = sin? & +sin* (5-n) = 1~ cosncos(286 - n)
(23)

where § = v, - €,. Note that f(8) is symmetric about § =n/2,
which corresponds to when the vehicle is halfway between the
two stations (sce Fig 1). When 0 <n <90°, f(8) increases as §
deviates from n/2, or when the vehicle moves toward either
station from the midpoint. So, when 0 <7 < 90°, the worst
performance is when the vehicle is exactly halfway between
the two stations. This is shown in Fig. 4. When n > 90°, the
converse is true and the best performance is when the vehicle
is exactly halfway between the two stations. Since f(6) is
independent of § when = 90°, this is the best value of 1 from
the viewpoint of uniformity of performance over a range of
Yo- An examination of Eq. (23) shows that for 80° < n <
100°, the variation of performance is less than 20% for & from
0ton.

The above considerations are when «w = v =0. Let us now
consider when w #0 and v# 0. In Appendix B, it is shown
that approximate expressions for Gy Oy 8(}51/870 and
09, /870 are:

9,(6,7,)

2\ -1 2 vd . cOs &
= (1 -(%) ) (%) i [(ngrR?)o(cz ~ Vz)]l/z !

2 2 2

2 2\1/2
+(d0+R1> ] vd ) cos a
c*-v

C2—V
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B, e - 24
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p 2 -1 p\2 vdo cos a
= (1—(7)> (?) ¥ 2 2y (2 _ 21112 !
[(d2 +R2) (c* - »?))

(df) +R§ )1/2 vd,, cos a
+ —

2 2
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Ry,
- @ TR - V2)11/2 cos (7, - €, - n- wh) (25)
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301,7,)
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R d,

~

@R (-

2 2\-1/2
VR, d0+R1 pi2\ -t
- - (= L-(=)) e
2_ .2 2_ .2 c

(G

vz)]l/2 sin (70 - €y~ wi)

" sin(y, - €, ta- wi) (26)

30, (1,7,)
670

R2d0
> sin(y, - €. - n- wi)
(@ +R2) (- 0 0

csin(y, - €, ta-n- wr) (27)

In Eq. (26), the factor in front of sin (y, - €y T @~ wt)is of
the order 107 while the factor in front of sin (Y9~ € — wi)
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is of the order 1072, Hence, the second term in Eq. (26) can
be neglected except when sin (v, - €, + & - wr) is sufficiently
larger than sin (v, - €, - w?). In an extreme case when Yo -
€0 = 0° and o= 90°, the first term in Eq. (26) is zero at £ = 0.
However, as ¢ deviates sufficiently from 0, the first term will
again dominate the second term. For example, if |f] = 10 sec,
the first term is 10 times the second in Eq. (26). So, in
instances when the observation time interval 7', + T, is much
larger than 10 sec, the contribution of the second term in Eq.
(26) to the Cramer-Rao lower bound will be negligibly small.
The same conclusion can be drawn for the second term in Eq.
(29). Hence, neglecting these terms results in the following
approximation to the Cramer-Rao lower bound (Eq. (5)):

232
2RldO

W

El5 - 2
[(70 70) : N1(02 - %) (d(z) +R?)

T2
f s (1~ ¢,(7,))
=T

1

sin? (7o ~ €~ wi)dt

2,92
2R2dO

+
22N (g2 2
Ny(c® - v?) (d? +R?)

T2
f $2 (1= 0,(1,7,)
=T

1
sin? (v, ~ €y~ m- wt)dt (28)

where ¢, and ¢, are given by Egs. (24) and (25) respectively.

Let us now compare Eq. (28) with Eq. (22) when w =v=0.
From Egs. (24) and (25) it can be seen that the dependence of
¢, and ¢, on 7, is small. We may assume that ¢, and ¢, are
both essentially independent of v, in Eq. (28). So from the
viewpoint of dependence on v, the essential difference in the
structure of Eq. (28) to the structure of Eq. (22) is the sin?
(7o ~ €o ~wt) and sin? (y, ~ €, - n - wt) factors in the inte-
grands in Eq. (28) versus the corresponding sin? (7o~ €g)and
sin® (v, - €, - m) factors in Eq. (22). Although the earth
rotational angular velocity w =7.27 X 10~5 rad/sec, for r = 30
minutes wr = 7.5°. Hence this difference is certainly not



negligible. This points out a significant contribution to the
estimation performance due to the rotation of the stations.

To assess the dependence of Eq. (28) on the angular
position 7y, we assume that ¢ and ¢, are essentially
independent of vy, in Eq. (28). Under the assumption that
N, =N, and R, = R, the integrand in Eq. (28) is directly
proportional to

sin? (Yo~ €y~ Wi+ sin? (Yy~ €y~ 1~ wi)

= 1-cosncos [2(y, -~ €, wi)~ 1l . 29)

Comparing Eq. (29) to Eq. (23), we see that to a first order
approximation, the conclusions regarding the dependence of
performance on angular position v, = €, in the case w =v =0
still hold here. In particular, it is clear from Eq. (29) that from
a viewpoint of uniformity of performance over a range of v,
angular positions near n = 90° are desirable.

Let us consider next the effect of varying the parameters
R, and R, on the optimum attainable estimation perfor-
mance. Recall that R, and R, are the distances from the
stations to geocenter. In Eq. (17), the values of R, and R, are
for ground-based stations. The other case of interest is when
the two stations are in geostationary orbit with R, = R,. We
shall consider an orbital radius of up to 10° km Hence we
need to examine the dependence of Eq. (5) on R, =R, fora
range of these parameters from 6.5 X 10% km to 105 km. We
still take do, the distance of the vehicle to geocenter, to be as
in Eq. (17). Hence d, is still much larger than R and R,. In
this case, an examination of the derivation in Appendix B
shows that we can still use the approximation in Eq.(28) to
Eq. (5) with the expressions in Egs. (24) and (25) for ¢, and
¢,, respectively. Since d,, is much larger than R, = R,, an
examination of Egs. (24), (25) and (28) shows that the
Cramer-Rao lower bound is proportional to l/Ri = l/Rg. In
other words, the root mean square estimation error is directly
proportional to l/R = 1/R,. Increasing, R| =R, from 6.5 X
10% km to 10° km will decrease the optlmum root mean
square estimation error by two orders of magnitude.

Finally, let us consider the effect of varying the observation
duration 7 + T, on the optimum attainable estimation
performance. We assume that 7' + T, is large compared to 10
seconds and that the other parameters are given as in Eq. (17).
Then Eq. (28) is again a valid approximation of Eq. (5) with
¢, and ¢, approximated by Egs. (24) and (25), respectively.
We also assume that the frequency of the ranging signals(¢) is
much higher than 1/(7 + T,) and also much higher than
w(2n (w = rotational angular velocity of the stations). It is still
difficult to assess the dependence of Eq. (28) on 7', and T,in

general because of the sin? (v~ € ~ wt)and sin? (Yg~ €~
- wt) terms in the integrals in Eq. (28). These terms change
the value of the integrands as T, and T, are varied. To a first
order approximation it appears that the right-hand side of Eq.
(28) is inversely proportional to

2 ~ _ _ ain? -
(T, +T,) [sin (vy~ €y~ wT,) —sin” (v, - ¢, + wT)
s 02 _ - — qin? - -
tsin” (v, - €, - n- wT,)~sin vy~ €~ ntwl)]

= (Tl + T2) {2— €Os 1 COs [2(70 T € wT2)_ ]

- cos n cos [2y, - €, +wT,) - 0l %

In the case when n = 90°, Eq. (30) reduces to AT +T,).
Thus, when 1 22 90°, the optlmum attainable root mean square
error performance is approximately inversely proportional to

VTt T).

Finally, we consider a specific ranging signal s(z) and
perform numerical computations of the Cramer-Rao lower
bound.

Example

Consider a sinusoidal ranging signal of frequency f, Hz.
That is,

s() = ﬁgcos (2nf 1)

We assume that for i = 1, 2, the demodulated ranging signal
power to noise spectral density ratio is

S - 10dB.
Ni

This signal-to-noise ratio is consistent with X-band carrier,
20-dB vehicle antennae gain, 53-dB station antenna gains,
receiver noise temperatures of S0°K, 20 W vehicle transmitted
power and a 3-dB modulation loss. We also assume that

d, = 8X 10® km
v = 10 km/sec
R, =R, = 65X 10% km

21



These parameters are consistent with that encountered in a
Jupiter mission with ground-based stations. We also assume
that 7', = T,. Numerical Monte Carlo integration was used to
compute the value of the Cramer-Rao lower bound for various
values of signal frequency f, and observation time duration T,
+ T,. The numerical computations are within a 1% accuracy.
These numerical results are summarized in Tables 1 and 2
below. The listed angle estimation accuracies in these tables
are the square root of the Cramer-Rao lower bound.

Table 1 shows that the optimum angle estimation accuracy
is inversely proportional to the frequency of the sinusoidal
ranging signal. Although this particular relation between
estimation accuracy and signal frequency does not hold in
general, it can be easily seen from Eq. (5) that signals of higher
frequency give a smaller Cramer-Rao lower bound. Also note
that Table 2 shows that the estimation accuracy is approxi-
mately inversely proportional to T} +T,, as we would expect,
since n = 90°.

We note that the above angle estimation accuracy was
obtained using the Cramer-Rao lower bound, Eq. (5), which is
valid when v, is an unknown but nonrandom parameter.
Suppose instead that 7y, is a random parameter and can a
priori be assumed to be normally distributed. Then the
relevant lower bound on mean square estimation error is
Eq. (7). We claim that if the a priori variance of Yo 18 much
larger than the lower bound Eq. (5), then the above estimation
accuracy calculation is still valid. This follows because Eq. (5)

is essentially independent of v, in this case since n = 90°.
Hence, the expectation term in Eq.(7) is 1/(lower bound
Eq. (5)).

V. Conclusion

This work has considered the problem of estimating the
angular position of a moving vehicle using two rotating
stations. The optimum attainable angle mean square estima-
tion error was derived along with an implementable sub-
optimal estimation algorithm. A situation comparable to that
encountered in a Jupiter mission was further analyzed. In this
situation it was shown that the optimum angle between the
two stations from a viewpoint of uniformity of estimation
performance is 90°. Tt was also shown that the optimum
attainable estimation accuracy varies inversely with the dis-
tance of the stations from geocenter and approximately
inversely with the square root of the observation time
duration. The optimum attainable angular estimation accuracy
was numerically computed for a sinusoidal ranging signal.
These computations show that the optimum attainable estima-
tion accuracy is 0.02 wrad for a 2MHz signal and an
observation time of one hour.

This work has only considered the problem of estimating
one angle with the range, velocity and other angles of the
vehicle known. Further work should be done to include some
or all of these parameters as parameters to be estimated along
with the angle considered in this work.

References

1. H. L. Van Trees, Detection, Estimation and Modulation Theory, Part I, John Wiley

and Sons, New York, 1968.

2. J. L. Galdos, “A Lower Bound on Filtering Error with Application to Phase Modula-
tion,” IEEE Trans. Inform. Theory,Vol. IT-25, No. 4, pp. 452462,1979.

3. ). Ziv and M. Zahai, “On Functionals Satisfying a Data-Processing Theorem,” IEEE
Trans. Inform. Theory, Vol. IT-19, No. 3, pp. 225-280, 1973.

4. T. P. McGarty, Stochastic Systems and State Estimation, John Wiley and Sons, New

York, 1974.

5. A. H. Jaswinski, Stochastic Processes and Filtering Theory, Academic Press, New

York, 1970.

22



Table 1. Estimation accuracy vs signal frequency

Signal frequency Optimum angle
fe estimation accuracy
2 MHz 0.018 purad
5 MHz 0.0072 urad
10 MHz 0.0036 prad
20 MHz 0.0018 urad

Table 2. Estimation accuracy vs observation time

Observation time Optimum angle
duration (T +T) estimation accuracy
10 min 0.046 urad
30 min 0.026 prad
60 min 0.018 urad

90 min 0.015 urad




a, Yy, €q ARE POSITIVE ANGLES y
IN THE COUNTERCLOCKWISE
DIRECTION

7 IS ALWAYS POSITIVE

STAR REFERENCE

Fig. 1. Vehicle and station locations

5, = STATION 1 .
5, = STATION 2
V = VEHICLE V(=0
0 = EARTH GEOCENTER
t,<t. <0
i<
do
S.(t=1.)
o St=0 )
| o
e(ri)
d(’ri)
S ¢ =0 —wt ]
2 i -
S](t = ri)
< 7o
0 STAR REFERENCE

Fig. 2. Relative locations for t = 0, t;, t;
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Appendix A

Derivation of Expressions for ¢, and ¢,

It follows from Egs.(1) and (2) that the signal value
received at station S at time ¢ is the signal value transmitted
by the vehicle at time £ - ¢ ,(z,y,) fori=1.2. Define

T{) =t~ ¢l.(t,70), i=1.2 (A-1)

For time instants ¢, and t. let

r (t, t]) = distance between the vehicle at time ¢, and
station S, at time 4

r (t t, ) = distance between the vehicle at time 7; and
station S, at time i
It is then clear from Egs. (1), (2) and (A-1) that
r Ir(0.1]

o{t7y) = (A2)
or equivalently,
T(t) =t~ . (A-3)

for i = 1,2. Hence if Eq. (A-3) can be solved for 74(¢), then

(t 70) may be obtained using Eq.(A-1). In order to
aCcomphsh this we must first obtain expressions for » (t t)
and r,(z, t) Since 7(1) <t in (A-3), we are interested 1n the
cases 0 <t <t t; <0 <t and 7, <r; <0 only in determining
these expressmns Cons1der first the case when r; <t; <O as
given in Fig. 2. Also we shall assume that 0 <a < < 180 in Fig.
2. Let

d(z;) = distance between the vehicle and Earth geocenter
at time 7.
O(ri) = relative angle at geocenter between the vehicle

positions at t =0 and ¢t = ¢,.

From the geometry of Fig.2 we can write the following
relations

d*(t) = v?i} +d} +2d e, cos o (A4)

d(z,) -(vt)
" sin 0(t,)

sin « (A-3)

ri(ti,t].) = d3(t)+R2- 2R d (1)
cos [y, - €, wt; - 0(z,)} (A-6)

) = di(t) + RS- 2R d\ (1)
cos [n+ey - v, +0()+ wtj] (A7)

Next, using Egs. (A4) and (A-5) we get
cos 6 (t) = [1-sin? 6(c)] '
d, tvt cosa

TR (A-8)

d(t,)

Now, substitution of Egs. (A-5) and A-8) into Egs. (A-6) and
(A-7) yield the following expressions for rf(tl.,t].) and rg(tl, t].):

rf (ti,t].) = dz(tl.) +Rf - 2R.d cos (Yo~ €~ cotl.)

- 2R vt cos(aty, ~ e - wt].) (A9)
2 ) 2 _ -
r2(tl.,tj) = d*(t)+ R - 2R, d cos (ntey—7,t wt].)

= 2R vt cos(@-n- €y Ty, wt].) (A-9)

So, Eqs. (A-4), (A-8) and (A-9) define r2(t £) and r2(z‘ t.) for
the case ¢; <t; <0and 0 <a<180°. Arguments simifar to
the above can be used to establish Egs. (A4), (A-8) and (A-9)
when 0 <7, <t ort, <0<t and also when 180° < a <
360°. Hence we may conclude that these equations hold for
all cases of interest in solving Eq. (A-3) for Tl(t) For simplicity
let us denote 'rl.(t) by 7, for the remainder of the appendix.
Squaring Eq. (A-3) yields

Ar,- 1)t = rir,0, i=12 (A-10)
Next, substitution of Egs. (A-4), (A-8) and (A-9) into Eq.
(A-10) yields the following quadratic equations satisfied by 7,
and 7,
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(c? - vy} = 2[Pr +vd, cosa~ VR cos (a+7, - € - wi)]T,
- [dg +Rf - 2R d, cos(y, -~ €,~ wi) - A1*] =0
(A-11)
(@ - V)1l - 2[Pr +vd, cos a- VR, cos (@-n- €, +7,
- wt)]72
- [d} +R2 - 2R,d cos (n+ €, ~ vy, + wt)
-e?] =0

(A-12)

The constraint that 7, <t identifies the roots of Egs. (A-11)
and (A-12) that give 7, and 7, respectively. These are:

= (1_ 25371 . 2 _ -
T, = (1-@/e)) [z +(vd, cos a)fc YR, cos (v, ta €

- wn)fe*] -4 (1= ) [+ (vd, cos @)fc?

28

_ e - 212
VR, cos (v, ta- e, - wi)fc”]

-1
+(1- (/e)®) [(d3+R? - 2R d, cos (v, - €,

12

- wi)fc? - 2]} (A-13)

T, = (1- (V/c)2)_1 [t + (vd, cos a)/c? - VR, cos (v, +a- €

- n- wb)fe?] +{ (1- (V/C)2)_2 [z +(vd, cos a)/c?
- VR, cos(y, ta- €™ M- cuz‘)/cz]2

+(1- (1’/6’)2)_1 [(d(z) +R§ = 2R,d, cos (v, €4~ m

172

- wi)fe? - 2]} (A-14)

Finally, Egs. (A-1), (A-13) and (A-14) give the expressions in
Egs. (3) and (4) for ¢1(t,70) and ¢,(,7,), respectively.



Appendix B

Approximations to ¢4, ¢,, — and

Consider first ¢, given by Eq.(3). Ignoring terms smaller
than 10~2, we have

{(1 - (V/C)2)—2 [t +(vd,, cos a)fc- VR cos(y, ta- e,

- W] +(1- (/0 [(d2+R?- 2R d

cos (v, ~ €, = wi))/c? - 1?] } 12

2 2\ 1/2
<d0+R1> . 2vd, cos & .
c?-y? @+ R (1- (v/e))

R

2R d 12
cos (v, = €, ~ wi)
d? +R?
o ™1
2 2\1/2
N (d0+R_l_) L 2vd, cos o t
c?-? @3 +R3) (1~ (v/e)*)
R,
- iR cos (v, = €, = wi) (B-1)
+
0 M1

where the second line in Eq. (B-1) is obtained by using the
approximation (1 + x)'/? = 1 + (1/2)x with accuracy of the
order 10710, Substitution of (B-1) into Eq. (3) and ignoring
terms of order 1077 and smaller gets Eq.(26). A similar
argument using Eq. (4) gets Eq. (27). Consider next d¢,/dy,
and 3¢, /3y, . Differentiating Eq. (3) and Eq. (4) yields

9 (t,7,) VR,

= - sin(y, - €, +a- wt)
870 2 -2 LY

- ,
[t + (valO cos a)/c

+{(1- wle?)

: 2
- Co- — 2
VR, cos ('yo €, + @ whfc*]

-1
+(1- (v/c)) [(df) +R§ - 2R d cos(y, - €,

o]
Yo Yo
G |

' {(1 - leyr) i+ 0d cosfe?

= VR cos (v, - €, + a- wi)fc?]

. (VRl/c2) sin (v, — €, t a= wi)

02 sin (7, - €, - wt)} (B-2)

3¢, (t,7,) R,

- sin(y, - €, +a-n- wt)
37, c? -p? o 0

-2

+1(1 - (¢/e)?)

2
[z +vd cosafc

2
- VR, cos(y,~ €, ta-n- wh)/c?]

-1
+(1- (v[e)?) [(dg +R§ - 2R,d cos(y, - €,

- n- wh)fe? - t2]}—1/2

. {(1 - (V/C)2)_1 [t + (vd, cos a)/c?
= VR, cos(y,~e,ta-n- wt)/c?]

. (sz/c2) sin (70 - e, ta- - wi)

R d
+ 20sin( -~ €, " n- wt)
PRI L R

(B-3)
2=y

An approximation similar to that used in (B-1) can then be
used with (B-2) and (B-3) to establish Egs. (28) and (29).
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